Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Geospat Health ; 17(2)2022 12 01.
Article in English | MEDLINE | ID: covidwho-2155486

ABSTRACT

This paper aimed to analyse the spatio-temporal patterns of the diffusion of SARS-CoV-2, the virus causing coronavirus 2019 (COVID-19, in the city of Bologna, the capital and largest city of the Emilia-Romagna Region in northern Italy. The study took place from February 1st, 2020 to November 20th, 2021 and accounted for space, sociodemographic characteristics and health conditions of the resident population. A second goal was to derive a model for the level of risk of being infected by SARS-CoV-2 and to identify and measure the place-specific factors associated with the disease and its determinants. Spatial heterogeneity was tested by comparing global Poisson regression (GPR) and local geographically weighted Poisson regression (GWPR) models. The key findings were that different city areas were impacted differently during the first three epidemic waves. The area-to-area influence was estimated to exert its effect over an area with 4.7 km radius. Spatio-temporal heterogeneity patterns were found to be independent of the sociodemographic and the clinical characteristics of the resident population. Significant single-individual risk factors for detected SARS-CoV-2 infection cases were old age, hypertension, diabetes and co-morbidities. More specifically, in the global model, the average SARS-CoV-2 infection rate decreased 0.93-fold in the 21-65 years age group compared to the >65 years age group, whereas hypertension, diabetes, and any other co-morbidities (present vs absent), increased 1.28-, 1.39- and 1.15-fold, respectively. The local GWPR model had a better fit better than GPR. Due to the global geographical distribution of the pandemic, local estimates are essential for mitigating or strengthening security measures.


Subject(s)
COVID-19 , Hypertension , Humans , Aged , SARS-CoV-2 , COVID-19/epidemiology , Pandemics , Italy/epidemiology
2.
Int J Environ Res Public Health ; 19(4)2022 02 16.
Article in English | MEDLINE | ID: covidwho-1699259

ABSTRACT

This study aimed to identify and explore the hospital admission risk factors associated with the length of stay (LoS) by applying a relatively novel statistical method for count data using predictors among COVID-19 patients in Bologna, Italy. The second goal of this study was to model the LoS of COVID patients to understand which covariates significantly influenced it and identify the potential risk factors associated with LoS in Bolognese hospitals from 1 February 2020 to 10 May 2021. The clinical settings we focused on were the Intensive Care Unit (ICU) and ordinary hospitalization, including low-intensity stays. We used Poisson, negative binomial (NB), Hurdle-Poisson, and Hurdle-NB regression models to model the LoS. The fitted models were compared using the Akaike information criterion (AIC), Vuong's test criteria, and Rootograms. We also used quantile regression to model the effects of covariates on the quantile values of the response variable (LoS) using a Poisson distribution, and to explore a range of conditional quantile functions, thereby exposing various forms of conditional heterogeneity and controlling for unobserved individual characteristics. Based on the chosen performance criteria, Hurdle-NB provided the best fit. As an output from the model, we found significant changes in average LoS for each predictor. Compared with ordinary hospitalization and low-intensity stays, the ICU setting increased the average LoS by 1.84-fold. Being hospitalized in long-term hospitals was another contributing factor for LoS, increasing the average LoS by 1.58 compared with regular hospitals. When compared with the age group [50, 60) chosen as the reference, the average LoS decreased in the age groups [0, 10), [30, 40), and [40, 50), and increased in the oldest age group [80, 102). Compared with the second wave, which was chosen as the reference, the third wave did not significantly affect the average LoS, whereas it increased by 1.11-fold during the first wave and decreased by 0.77-fold during out-wave periods. The results of the quantile regression showed that covariates related to the ICU setting, hospitals with longer hospitalization, the first wave, and the out-waves were statistically significant for all the modeled quantiles. The results obtained from our study can help us to focus on the risk factors that lead to an increased LoS among COVID-19 patients and benchmark different models that can be adopted for these analyses.


Subject(s)
COVID-19 , COVID-19/epidemiology , Hospitalization , Humans , Intensive Care Units , Length of Stay , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL